CURRICULUM VITAE

Ting-Yun Yen, B.S., M.S.
National Yang-Ming University
Institute of Neuroscience
No. 155, Section 2, LiNong Street, Beitou District
Taipei 112, Taiwan

Work: +886 (02) 2826-7000#6090; Fax: +886 (02) 2821-5307; E-mail: ritz6513@gmail.com

NAME	POSITION TITLE
Yen, Ting-Yun	Graduate Student of Neuroscience

EDUCATION/TRAINING

INSTITUTION AND LOCATION	DEGREE (if applicable)	YEAR(s)	FIELD OF STUDY
National Yang-Ming University, Taiwan	B.S.	2009-2012	Biotechnology and Laboratory Science in Medicine
National Yang-Ming University, Taiwan	M.S.	2012-2014	Physiology/Neuroscience (Mentor: Cheng-Chang Lien)
National Yang-Ming University, Taiwan	Graduate student	2014-now	Molecular Medicine/Neuroscience (Mentor: Cheng-Chang Lien)

A. Personal statement

Hippocampal dentate gyrus exhibits many kinds of neurons including the excitatory principle neurons, that is, granule cells and inhibitory GABAergic neurons. I have found a subpopulation of somatostatin-expressing GABAergic neurons, which would protrude commissural projection from one side of hippocampus dentate gyrus to the contralateral part of the dentate gyrus. The long-range inhibitory connection between distal brain regions have been regard as the key for brain oscillation. I use optogenetic- and chemogenetic-assisted functional and connectional mapping to study the function of long-range inhibition. Together with stereotaxic microinjection, *in vivo* recording, slice Ca²⁺ imaging and slice electrophysiology, I am able to study the brain connectome from multiple aspects.

Positions and Honors.

Other Experience and Professional Memberships

2014: Student Membership, Society for Neuroscience (SfN), USA

2014: Student Poster Competition, National Yang-Ming University, Taiwan

2015: Membership, Neuroscience Society of Taiwan

Honors

2014: Award of first of thesis competition from Institute of Neuroscience, National Yang-Ming University, Taiwan

2014-Now: Taiwan International Graduate Program Scholarship

B. Peer-reviewed publications (in reverse chronological order).

1. Huang CY, Lien CC, Cheng CF, Yen TY, Chen CJ, Tsaur ML. (2017). K + channel Kv3.4 is essential for axon growth by limiting the influx of Ca²⁺ into growth cones. Journal of Neuroscience