Print this Page

Presentation Abstract

Title:	Low ca ²⁺ buffering and slow ca ²⁺ extrusion in a dendritic inhibitory interneuron of rat hippocampus
Location:	South Hall A
Presentation Time:	Wednesday, Oct 21, 2009, 3:00 PM - 4:00 PM
Authors:	* CC. LIEN , CW. LIAO; Natl. Yang-Ming Univ., Taipei, Taiwan
Abstract:	Ca ²⁺ -mediated excitotoxicity has been proposed to underlie the selective loss of dendritic inhibitory interneurons in epileptic
	hippocampus. In the present study, we investigated Ca ²⁺ buffering
	and action potential (AP)-evoked Ca ²⁺ signaling in the dendrites of oriens lacunosum-moleculare (O-LM) cells in the hippocampal CA1 region, a major type of dendrite-targeting interneurons, using a
	combination of whole-cell patch-clamp recordings with fast Ca ²⁺
	imaging in rat brain slices. Cells were loaded with fluorescent Ca ²⁺ indicators fura-2 or Oregon Green BAPTA-1 (OGB-1) by patch-clamping the cell bodies and allowing the dyes to diffuse into the
	dendrites. Ratiometric Ca ²⁺ imaging was used to determine the effect
	of an added Ca ²⁺ buffer fura-2 on AP-evoked Ca ²⁺ transients. To
	estimate the AP-mediated Ca^{2+} load and endogenous Ca^{2+} -binding ratio (κ_s) in the proximal dendrites, fluorescence signals were
	converted into Ca ²⁺ concentrations ([Ca ²⁺] _i) using isosbestic ratioing
	method and were analyzed on the basis of the 'single compartmental model'. The estimated resting [Ca ²⁺], was 43 nM and the build-up of
	I I
	$[Ca^{2+}]_{i}$ during a single AP was up to 613 nM. Analysis of Ca ²⁺
	transients during fura-2 (150 μM) loading or under different steady-state fura-2 concentrations indicated that O-LM cells have
	relatively low endogenous Ca^{2+} buffer capacities: the κ_s was 19-23

	during fura-2 loading and ~27-58 under steady-state fura-2
	concentrations, respectively. The AP-evoked Ca ²⁺ signal decays with time constants of about 128-347 ms, corresponding to extrusion rates
	of 168-258 s ⁻¹ . To further examine the spatial profile of AP-evoked
	dendritic Ca ²⁺ transients, we measured somatic AP-evoked Ca ²⁺
	transients along dendrites using the Ca ²⁺ -sensitive dye OGB-1. Single APs or AP trains induced by somatic current injection reliably
	evoked uniform and robust Ca ²⁺ accumulations in the dendritic regions up to 150 μm from the soma. The amplitude and decay of
	Ca ²⁺ transients associated with backpropagating APs are relatively independent of distances from the soma. These results show that
	O-LM cells have low endogenous Ca ²⁺ -binding ratios associated with
	slow Ca ²⁺ extrusion that allow large, uniform and prolonged [Ca ²⁺] _i
	accumulation along somato-dendritic domains. These unique features
	of Ca ²⁺ dynamics may be relevant to synaptic plasticity and the selective vulnerability to excitotoxicity of O-LM cells.
Disclosures:	C. Lien , None; C. Liao, None.
Keyword(s):	dendrite
	calcium imaging
	Ca2+-binding ratio
Support:	NSC Grant NSC97-2321-B-010-005
	NHRI Grant NHRI-EX97-9720NC
	[Authors]. [Abstract Title]. Program No. XXX.XX. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online.
	2009 Copyright by the Society for Neuroscience all rights reserved. Permission to republish any abstract or part of any abstract in any form must be obtained in writing by SfN office prior to publication.